If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25z^2-150z+218=0
a = 25; b = -150; c = +218;
Δ = b2-4ac
Δ = -1502-4·25·218
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-10\sqrt{7}}{2*25}=\frac{150-10\sqrt{7}}{50} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+10\sqrt{7}}{2*25}=\frac{150+10\sqrt{7}}{50} $
| 2/3×+y=3 | | 1/2x-1/3x=1/6 | | 2z-(7-5z)-21=0 | | 3x÷8-1=5÷8 | | 2(×-1)-3(x+1)=12+21 | | 16n-(9n-2)=58 | | 7x-8=3+4x | | 10^2+5x+5=0 | | 3c-(8c+9)=-19 | | 0.5x-0.1(5-x)=2.8 | | 2x-8(5-x)=16 | | -4+12y+7=16+14y-19 | | 0.3y+0.6=0.1-0.2y | | 6(x-1=30 | | 1-4x=-7x+4 | | 0.7x=6.6 | | 7x+5-9x=7x-5+x | | 2-4x=-30+4x | | 5(c-8)-3(2c+12)=-8 | | x/5+6=14 | | 3x+2.6=7.4 | | 8d–17d+15d=-18 | | 7^2x+7^5=2.5 | | 7^2x+5=2.5 | | Y/3+y/8=11 | | 3x+1+5x-3=180 | | |x-7|=16 | | 99=33m | | 20+8(q-11=-12 | | 3/2-x=12 | | A=½πr² | | 13w+14w-7+5=-4w+5-7 |